Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.434
Filtrar
1.
Environ Sci Technol ; 58(15): 6825-6834, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567993

RESUMEN

Hg(I) may control Hg redox kinetics; however, its metastable nature hinders analysis. Herein, the stability of Hg(I) during standard preparation and analysis was studied. Gravimetric analysis showed that Hg(I) was stable in its stock solution (1000 mg L-1), yet completely disproportionated when its dilute solution (10 µg L-1) was analyzed using liquid chromatography (LC)-ICPMS. The Hg(I) dimer can form through an energetically favorable comproportionation between Hg(0) and Hg(II), as supported by density functional theory calculation and traced by the rapid isotope exchange between 199Hg(0)aq and 202Hg(II). However, the separation of Hg(0) and Hg(II) (e.g., LC process) triggered its further disproportionation. Polypropylene container, increasing headspace, decreasing pH, and increasing dissolved oxygen significantly enhanced the disproportionation or redox transformations of Hg(I). Thus, using a glass container without headspace and maintaining a slightly alkaline solution are recommended for the dilute Hg(I) stabilization. Notably, we detected elevated concentrations of Hg(I) (4.4-6.1 µg L-1) in creek waters from a heavily Hg-polluted area, accounting for 54-70% of total dissolved Hg. We also verified the reductive formation of Hg(I) in Hg(II)-spiked environmental water samples, where Hg(I) can stably exist in aquatic environments for at least 24 h, especially in seawater. These findings provide mechanistic insights into the transformation of Hg(I), which are indicative of its further environmental identification.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Agua de Mar/análisis , Agua de Mar/química , Isótopos/análisis , Contaminantes Químicos del Agua/análisis
2.
Methods Mol Biol ; 2797: 23-34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570450

RESUMEN

Isotopically labelled proteins are important reagents in structural biology as well as in targeted drug development. The field continues to advance with complex multi-isotope labeling. We have combined our experience in high-level soluble KRAS4b expression with protocols for isotope incorporation, to achieve reliable and efficient approaches for several labeling strategies. Typical experiments achieve nearly 100% 15N incorporation, with yields in the range of 1.3-24.6 mg/L (median = 6.4 mg/L, n = 53). Improvements in the growth parameters in the presence of deuterium reduce the standard time of fermentation from 5 days to 3 days by modifying the medium used during the weaning process. The methods described are compatible with multi-isotope labeling and site-specific labeling.


Asunto(s)
Isótopos , Proteínas , Proteínas/química , Marcaje Isotópico/métodos , Isótopos de Nitrógeno
3.
Sci Rep ; 14(1): 7899, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570566

RESUMEN

Hutchison's niche theory suggests that coexisting competing species occupy non-overlapping hypervolumes, which are theoretical spaces encompassing more than three dimensions, within an n-dimensional space. The analysis of multiple stable isotopes can be used to test these ideas where each isotope can be considered a dimension of niche space. These hypervolumes may change over time in response to variation in behaviour or habitat, within or among species, consequently changing the niche space itself. Here, we use isotopic values of carbon and nitrogen of ten amino acids, as well as sulphur isotopic values, to produce multi-isotope models to examine niche segregation among an assemblage of five coexisting seabird species (ancient murrelet Synthliboramphus antiquus, double-crested cormorant Phalacrocorax auritus, Leach's storm-petrel Oceanodrama leucorhoa, rhinoceros auklet Cerorhinca monocerata, pelagic cormorant Phalacrocorax pelagicus) that inhabit coastal British Columbia. When only one or two isotope dimensions were considered, the five species overlapped considerably, but segregation increased in more dimensions, but often in complex ways. Thus, each of the five species occupied their own isotopic hypervolume (niche), but that became apparent only when factoring the increased information from sulphur and amino acid specific isotope values, rather than just relying on proxies of δ15N and δ13C alone. For cormorants, there was reduction of niche size for both species consistent with a decline in their dominant prey, Pacific herring Clupea pallasii, from 1970 to 2006. Consistent with niche theory, cormorant species showed segregation across time, with the double-crested demonstrating a marked change in diet in response to prey shifts in a higher dimensional space. In brief, incorporating multiple isotopes (sulfur, PC1 of δ15N [baselines], PC2 of δ15N [trophic position], PC1 and PC2 of δ13C) metrics allowed us to infer changes and differences in food web topology that were not apparent from classic carbon-nitrogen biplots.


Asunto(s)
Aminoácidos , Charadriiformes , Animales , Aminoácidos/metabolismo , Isótopos/metabolismo , Aves/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Azufre/metabolismo , Isótopos de Nitrógeno/metabolismo , Isótopos de Carbono/metabolismo
4.
Anal Chim Acta ; 1303: 342511, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38609261

RESUMEN

BACKGROUND: Mammalian cells both import exogenous fatty acids and synthesize them de novo. Palmitate, the end product of fatty acid synthase (FASN) is a substrate for stearoyl-CoA desaturases (Δ-9 desaturases) that introduce a single double bond into fatty acyl-CoA substrates such as palmitoyl-CoA and stearoyl-CoA. This process is particularly upregulated in lipogenic tissues and cancer cells. Tracer methodology is needed to determine uptake versus de novo synthesis of lipids and subsequent chain elongation and desaturation. Here we describe an NMR method to determine the uptake of 13C-palmitate from the medium into HCT116 human colorectal cancer cells, and the subsequent desaturation and incorporation into complex lipids. RESULTS: Exogenous 13C16-palmitate was absorbed from the medium by HCT116 cells and incorporated primarily into complex glycerol lipids. Desaturase activity was determined from the quantification of double bonds in acyl chains, which was greatly reduced by ablation of the major desaturase SCD1. SIGNIFICANCE: The NMR approach requires minimal sample preparation, is non-destructive, and provides direct information about the level of saturation and incorporation of fatty acids into complex lipids.


Asunto(s)
Bisfenol A Glicidil Metacrilato , Ácidos Grasos , Imagen por Resonancia Magnética , Humanos , Animales , Isótopos , Palmitatos , Ácido Graso Desaturasas , Mamíferos
5.
Environ Sci Technol ; 58(15): 6595-6604, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573735

RESUMEN

Meaningful interpretation of U isotope measurements relies on unraveling the impact of reduction mechanisms on the isotopic fractionation. Here, the isotope fractionation of hexavalent U [U(VI)] was investigated during its reductive mineralization by magnetite to intermediate pentavalent U [U(V)] and ultimately tetravalent U [U(IV)]. As the reaction proceeded, the remaining aqueous phase U [containing U(VI) and U(V)] systematically carried light isotopes, whereas in the bicarbonate-extracted solution [containing U(VI) and U(V)], the δ238U values varied, especially when C/C0 approached 0. This variation was interpreted as reflecting the variable relative contribution of unreduced U(VI) (δ238U < 0‰) and bicarbonate-extractable U(V) (δ238U > 0‰). The solid remaining after bicarbonate extraction included unextractable U(V) and U(IV), for which the δ238U values consistently followed the same trend that started at 0.3-0.5‰ and decreased to ∼0‰. The impact of PIPES buffer on isotopic fractionation was attributed to the variable abundance of U(V) in the aqueous phase. A few extremely heavy bicarbonate-extracted δ238U values were due to mass-dependent fractionation resulting from several hypothesized mechanisms. The results suggest the preferential accumulation of the heavy isotope in the reduced species and the significant influence of U(V) on the overall isotopic fractionation, providing insight into the U isotope fractionation behavior during its abiotic reduction process.


Asunto(s)
Óxido Ferrosoférrico , Uranio , Bicarbonatos , Isótopos , Fraccionamiento Químico
6.
Geobiology ; 22(2): e12596, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591761

RESUMEN

The formation of intracellular amorphous calcium carbonate (ACC) by various cyanobacteria is a widespread biomineralization process, yet its mechanism and importance in past and modern environments remain to be fully comprehended. This study explores whether calcium (Ca) isotope fractionation, linked to ACC-forming cyanobacteria, can serve as a reliable tracer for detecting these microorganisms in modern and ancient settings. Accordingly, we measured stable Ca isotope fractionation during Ca uptake by the intracellular ACC-forming cyanobacterium Cyanothece sp. PCC 7425. Our results show that Cyanothece sp. PCC 7425 cells are enriched in lighter Ca isotopes relative to the solution. This finding is consistent with the kinetic isotope effects observed in the Ca isotope fractionation during biogenic carbonate formation by marine calcifying organisms. The Ca isotope composition of Cyanothece sp. PCC 7425 was accurately modeled using a Rayleigh fractionation model, resulting in a Ca isotope fractionation factor (Δ44Ca) equal to -0.72 ± 0.05‰. Numerical modeling suggests that Ca uptake by these cyanobacteria is primarily unidirectional, with minimal back reaction observed over the duration of the experiment. Finally, we compared our Δ44Ca values with those of other biotic and abiotic carbonates, revealing similarities with organisms that form biogenic calcite. These similarities raise questions about the effectiveness of using the Ca isotope fractionation factor as a univocal tracer of ACC-forming cyanobacteria in the environment. We propose that the use of Δ44Ca in combination with other proposed tracers of ACC-forming cyanobacteria such as Ba and Sr isotope fractionation factors and/or elevated Ba/Ca and Sr/Ca ratios may provide a more reliable approach.


Asunto(s)
Cianobacterias , Cyanothece , Carbonato de Calcio , Carbonatos , Isótopos de Calcio , Isótopos/análisis , Organismos Acuáticos , Calcio
7.
Environ Geochem Health ; 46(5): 173, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592592

RESUMEN

Nitrate pollution in aquatic ecosystems has received growing concern, particularly in fragile karst basins. In this study, hydrochemical compositions, multiple stable isotopes (δ2H-H2O, δ18Ο-Η2Ο, δ15Ν-ΝΟ3-, and δ18Ο-ΝΟ3-), and Bayesian stable isotope mixing model (MixSIAR) were applied to elucidate nitrate pollution sources in groundwater of the Yangzhuang Basin. The Durov diagram identified the dominant groundwater chemical face as Ca-HCO3 type. The NO3- concentration ranged from 10.89 to 90.45 mg/L (average 47.34 mg/L), showing an increasing trend from the upstream forest and grassland to the downstream agricultural dominant area. It is worth noting that 47.2% of groundwater samples exceeded the NO3- threshold value of 50 mg/L for drinking water recommended by the World Health Organization. The relationship between NO3-/Cl- and Cl- ratios suggested that most groundwater samples were located in nitrate mixed endmember from agricultural input, soil organic nitrogen, and manure & sewage. The Self-Organizing Map (SOM) and Pearson correlations analysis further indicated that the application of calcium fertilizer, sodium fertilizer, and livestock and poultry excrement in farmland elevated NO3- level in groundwater. The output results of the MixSIAR model showed that the primary sources of NO3- in groundwater were soil organic nitrogen (55.3%), followed by chemical fertilizers (28.5%), sewage & manure (12.7%), and atmospheric deposition (3.4%). Microbial nitrification was a dominant nitrogen conversion pathway elevating NO3- levels in groundwater, while the denitrification can be neglectable across the study area. The human health risk assessment (HHRA) model identified that about 88.9%, 77.8%, 72.2%, and 50.0% of groundwater samples posing nitrate's non-carcinogenic health hazards (HQ > 1) through oral intake for infants, children, females, and males, respectively. The findings of this study can offer useful biogeochemical information on nitrogen pollution in karst groundwater to support sustainable groundwater management in similar human-affected karst regions.


Asunto(s)
Agua Subterránea , Nitratos , Niño , Femenino , Lactante , Masculino , Humanos , Teorema de Bayes , Ecosistema , Fertilizantes , Estiércol , Aguas del Alcantarillado , China , Isótopos , Nitrógeno , Suelo
8.
Sci Data ; 11(1): 349, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589396

RESUMEN

The Caribbean & Mesoamerica Biogeochemical Isotope Overview (CAMBIO) is an archaeological data community designed to integrate published biogeochemical data from the Caribbean, Mesoamerica, and southern Central America to address questions about dynamic interactions among humans, animals, and the environment in the region over the past 10,000 years. Here we present the CAMBIO human dataset, which consists of more than 16,000 isotopic measurements from human skeletal tissue samples (δ13C, δ15N, δ34S, δ18O, 87Sr/86Sr, 206/204Pb, 207/204Pb, 208/204Pb, 207/206Pb) from 290 archaeological sites dating between 7000 BC to modern times. The open-access dataset also includes detailed chronological, contextual, and laboratory/sample preparation information for each measurement. The collated data are deposited on the open-access CAMBIO data community via the Pandora Initiative data platform ( https://pandoradata.earth/organization/cambio ).


Asunto(s)
Arqueología , Isótopos , Plomo , Animales , Humanos , Región del Caribe , América Central
9.
J Mass Spectrom ; 59(5): e5025, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607249

RESUMEN

Energy-resolved mass spectrometry (ERMS) and an isotopically labelled internal standard were successfully combined to accurately quantify a tryptic peptide despite the presence of an isobaric interference. For this purpose, electrospray ionisation tandem mass spectrometry (ESI-MS/MS) experiments were conducted into an ion trap instrument using an unconventional 8 m/z broadband isolation window, which encompassed both the tryptic peptide and its internal standard. Interference removal was assessed by determining an excitation voltage that was high enough to maintain a constant value for the analyte/internal standard peaks intensity ratio, thus ensuring accurate quantification even in the presence of isobaric contamination. Pseudo-multiple reaction monitoring (MRM) was employed above this excitation voltage to quantify the trypic peptide. The internal standard calibration model showed no lack of fit and exhibited a linear dynamic range from 0.5 µM up to 2.5 µM. The detection limit was 0.08 µM. The accuracy of the method was evaluated by quantifying the tryptic peptide of three reference samples intentionally contaminated with the isobaric interference. All the reference samples were accurately quantified with ∼1% deviation despite the isobaric contamination. Furthermore, we have demonstrated that this methodology can also be applied to quantify the isobaric peptide by standard additions down to 0.2 µM. Finally, liquid chromatography ERMS (LC ERMS) experiments yielded similar results, suggesting the potential of the proposed methodology for analysing complex samples.


Asunto(s)
60705 , Espectrometría de Masas en Tándem , Espectrometría de Masa por Ionización de Electrospray , Isótopos , Péptidos
10.
PLoS One ; 19(4): e0300867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598461

RESUMEN

The study of spatial (paleo)ecology in mammals is critical to understand how animals adapt to and exploit their environment. In this work we analysed the 87Sr/86Sr, δ18O and δ13C isotope composition of 65 moose bone and antler samples from Sweden from wild-shot individuals dated between 1800 and 1994 to study moose mobility and feeding behaviour for (paleo)ecological applications. Sr data were compared with isoscapes of the Scandinavian region, built ad-hoc during this study, to understand how moose utilise the landscape in Northern Europe. The 87Sr/86Sr isoscape was developed using a machine-learning approach with external geo-environmental predictors and literature data. Similarly, a δ18O isoscape, obtained from average annual precipitation δ18O values, was employed to highlight differences in the isotope composition of the local environment vs. bone/antler. Overall, 82% of the moose samples were compatible with the likely local isotope composition (n = 53), suggesting that they were shot not far from their year-round dwelling area. 'Local' samples were used to calibrate the two isoscapes, to improve the prediction of provenance for the presumably 'non-local' individuals. For the latter (n = 12, of which two are antlers and ten are bones), the probability of geographic origin was estimated using a Bayesian approach by combining the two isoscapes. Interestingly, two of these samples (one antler and one bone) seem to come from areas more than 250 km away from the place where the animals were hunted, indicating a possible remarkable intra-annual mobility. Finally, the δ13C data were compared with the forest cover of Sweden and ultimately used to understand the dietary preference of moose. We interpreted a difference in δ13C values of antlers (13C-enriched) and bones (13C-depleted) as a joint effect of seasonal variations in moose diet and, possibly, physiological stresses during winter-time, i.e., increased consumption of endogenous 13C-depleted lipids.


Asunto(s)
Cuernos de Venado , Ciervos , Humanos , Animales , Isótopos de Estroncio/análisis , Suecia , Cuernos de Venado/química , Teorema de Bayes , Isótopos/análisis
11.
Sci Data ; 11(1): 336, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575659

RESUMEN

The South American Archaeological Isotopic Database (SAAID) is a comprehensive open-access resource that aggregates all available bioarchaeological stable and radiogenic isotope measurements, encompassing data from human individuals, animals, and plants across South America. Resulting from a collaborative effort of scholars who work with stable isotopes in this region, SAAID contains 53,781 isotopic measurements across 24,507 entries from individuals/specimens spanning over 12,000 years. SAAID includes valuable contextual information on archaeological samples and respective sites, such as chronology, geographical region, biome, and spatial coordinates, biological details like estimated sex and age for human individuals, and taxonomic description for fauna and flora. SAAID is hosted at the PACHAMAMA community within the Pandora data platform and the CORA repository to facilitate easy access. Because of its rich data structure, SAAID is particularly well-suited for conducting spatiotemporal meta-analyses. It serves as a valuable tool for addressing a variety of research topics, including the spread, adoption, and consumption intensification of food items, paleo-environmental reconstruction, as well as the exploration of mobility patterns across extensive geographic regions.


Asunto(s)
Arqueología , Isótopos , Animales , Humanos , Ecosistema , América del Sur
12.
Sci Rep ; 14(1): 5229, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433255

RESUMEN

In the Anthropocene, plastic pollution has become a new environmental biotope, the so-called plastisphere. In the oceans, nano- and micro-sized plastics are omnipresent and found in huge quantities throughout the water column and sediment, and their large surface area-to-volume ratio offers an excellent surface to which hydrophobic chemical pollutants (e.g. petrochemicals and POPs) can readily sorb to. Our understanding of the microbial communities that breakdown plastic-sorbed chemical pollutants, however, remains poor. Here, we investigated the formation of 500 nm and 1000 nm polystyrene (PS) agglomerations in natural seawater from a coastal environment, and we applied DNA-based stable isotope probing (DNA-SIP) with the 500 nm PS sorbed with isotopically-labelled phenanthrene to identify the bacterial members in the seawater community capable of degrading the hydrocarbon. Whilst we observed no significant impact of nanoplastic size on the microbial communities associated with agglomerates that formed in these experiments, these communities were, however, significantly different to those in the surrounding seawater. By DNA-SIP, we identified Arcobacteraceae, Brevundimonas, Comamonas, uncultured Comamonadaceae, Delftia, Sphingomonas and Staphylococcus, as well as the first member of the genera Acidiphilum and Pelomonas to degrade phenanthrene, and of the genera Aquabacterium, Paracoccus and Polymorphobacter to degrade a hydrocarbon. This work provides new information that feeds into our growing understanding on the fate of co-pollutants associated with nano- and microplastics in the ocean.


Asunto(s)
Comamonadaceae , Contaminantes Ambientales , Microbiota , Fenantrenos , Microplásticos , Plásticos , Poliestirenos , Sondas de ADN , Isótopos , ADN
13.
Arch Environ Contam Toxicol ; 86(3): 234-248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38555540

RESUMEN

Stable isotopes (SI) and fatty acid (FA) biomarkers can provide insights regarding trophic pathways and habitats associated with contaminant bioaccumulation. We assessed relationships between SI and FA biomarkers and published data on concentrations of two pesticides [dichlorodiphenyltrichloroethane and degradation products (DDX) and bifenthrin] in juvenile Chinook Salmon (Oncorhynchus tshawytscha) from the Sacramento River and Yolo Bypass floodplain in Northern California near Sacramento. We also conducted SI and FA analyses of zooplankton and macroinvertebrates to determine whether particular trophic pathways and habitats were associated with elevated pesticide concentrations in fish. Relationships between DDX and both sulfur (δ34S) and carbon (δ13C) SI ratios in salmon indicated that diet is a major exposure route for DDX, particularly for individuals with a benthic detrital energy base. Greater use of a benthic detrital energy base likely accounted for the higher frequency of salmon with DDX concentrations > 60 ng/g dw in the Yolo Bypass compared to the Sacramento River. Chironomid larvae and zooplankton were implicated as prey items likely responsible for trophic transfer of DDX to salmon. Sulfur SI ratios enabled identification of hatchery-origin fish that had likely spent insufficient time in the wild to substantially bioaccumulate DDX. Bifenthrin concentration was unrelated to SI or FA biomarkers in salmon, potentially due to aqueous uptake, biotransformation and elimination of the pesticide, or indistinct biomarker compositions among invertebrates with low and high bifenthrin concentrations. One FA [docosahexaenoic acid (DHA)] and DDX were negatively correlated in salmon, potentially due to a greater uptake of DDX from invertebrates with low DHA or effects of DDX on FA metabolism. Trophic biomarkers may be useful indicators of DDX accumulation and effects in juvenile Chinook Salmon in the Sacramento River Delta.


Asunto(s)
Plaguicidas , Piretrinas , Animales , Plaguicidas/análisis , Salmón/metabolismo , Ácidos Grasos/metabolismo , Bioacumulación , Diclorodifenil Dicloroetileno/análisis , Invertebrados , Ecosistema , Peces/metabolismo , Dieta , Isótopos/análisis , Biomarcadores/metabolismo , Azufre/metabolismo , Azufre/farmacología
14.
J Magn Reson ; 361: 107653, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471414

RESUMEN

Nuclear magnetic resonance (NMR) based 13C tracing has broad applications across medical and environmental research. As many biological and environmental samples are heterogeneous, they experience considerable spectral overlap and relatively low signal. Here a 1D 1H-12C/13C is introduced that uses "in-phase/opposite-phase" encoding to simultaneously detect and discriminate both protons attached to 12C and 13C at full 1H sensitivity in every scan. Unlike traditional approaches that focus on the 12C/13C satellite ratios in a 1H spectrum, this approach creates separate sub-spectra for the 12C and 13C bound protons. These spectra can be used for both quantitative and qualitative analysis of complex samples with significant spectral overlap. Due to the presence of the 13C dipole, faster relaxation of the 1H-13C pairs results in slight underestimation compared to the 1H-12C pairs. However, this is easily compensated for, by collecting an additional reference spectrum, from which the absolute percentage of 13C can be calculated by difference. When combined with the result, 12C and 13C percent enrichment in both 1H-12C and 1H-13C fractions are obtained. As the approach uses isotope filtered 1H NMR for detection, it retains nearly the same sensitivity as a standard 1H spectrum. Here, a proof-of-concept is performed using simple mixtures of 12C and 13C glucose, followed by suspended algal cells with varying 12C /13C ratios representing a complex mixture. The results consistently return 12C/13C ratios that deviate less than 1 % on average from the expected. Finally, the sequence was used to monitor and quantify 13C% enrichment in Daphnia magna neonates which were fed a 13C diet over 1 week. The approach helped reveal how the organisms utilized the 12C lipids they are born with vs. the 13C lipids they assimilate from their diet during growth. Given the experiments simplicity, versatility, and sensitivity, we anticipate it should find broad application in a wide range of tracer studies, such as fluxomics, with applications spanning various disciplines.


Asunto(s)
Isótopos , Protones , Espectroscopía de Resonancia Magnética/métodos , Mezclas Complejas , Lípidos
15.
Talanta ; 273: 125812, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452589

RESUMEN

In this study, an insulin-like growth factor-1 (IGF-1) certified reference material (CRM) was developed by the National Institute of Metrology (NIM), and two different principles for evaluating the IGF-1 CRM were established. After optimisation of the acid hydrolysis conditions (110 °C, 36 h), quantitative determination of peptide purity, and chromatographic separation and mass spectrometric detection, amino acid analysis-based high-performance liquid chromatography combined with isotope-dilution tandem mass spectrometry (AAA-HPLC-IDMS/MS) and peptide analysis-based HPLC-IDMS/MS (Peptide-HPLC-IDMS/MS) were used for certified value assignment; the results obtained were 136.28 and 135.01 µg/g, respectively, which were in good agreement. These results were subjected to the normal distribution test, outlier test, and method consistency test. The homogeneity and stability of the reference materials were also examined, and the uncertainty introduced in the experimental process was calculated. The final certified value was (136 ± 15) µg g-1 (k = 2). The CRM was found to be stable for at least six months when stored at -70 °C and for 7 d when stored at higher temperatures (-20 °C, 4 °C, 25 °C, or 40 °C). The CRM is expected to be used as a primary calibrator for quality control in biopharmaceutical production and clinical diagnostics.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , 60515 , Espectrometría de Masas en Tándem/métodos , Péptidos , Isótopos , Estándares de Referencia
16.
J Hazard Mater ; 469: 134014, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503208

RESUMEN

Plant metal uptake can occur through both soil-root and atmospheric transfer from leaves. The latter holds potential implications for development of biofiltration systems. To explore this potential, it is crucial to understand entrapment capacity and metal sources within plants. As ferns absorb materials from atmosphere, this study focuses on two abundant fern species growing in densely populated and highly polluted regions of Eastern India. Gravimetric quantification, elemental concentration and Pb isotopic analyses were performed by segregating the ferns into distinct components: foliage dusts (loose dust (LD) and wax-bound dust (WD)) and plant tissue (leaves and roots). To understand metal sources, the study analyzes soil, and atmospheric particulates (PM10 and dust fall (DF)). Results indicate that, while LDs have soil dust influence, wax entraps atmospheric particulates and translocates them inside the leaves. Furthermore, roots demonstrate dissimilar isotopic ratios from soil, while displaying close association with atmospheric particulates. Isotopic composition and subsequent mixing model reveal dominant contribution from DF in leaves (53-73%) and roots (33-86%). Apart from DF, leaf Pb is sourced from PM10 (21-38%) with minimal contribution from soil (6-10%). Conversely, in addition to dominance from DF, roots source Pb primarily from soil (12-62%) with a meagre 2-8% contribution from PM10.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Helechos , Metales Pesados , Contaminantes del Suelo , Plomo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminación del Aire/análisis , Polvo/análisis , Isótopos/análisis , Suelo , Contaminantes Atmosféricos/análisis , Contaminantes del Suelo/análisis
17.
Environ Sci Pollut Res Int ; 31(16): 23858-23875, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430435

RESUMEN

Hydrogeological, hydrochemical and isotopic traits of the groundwater in the Quaternary aquifer system in an urban-periurban locality within and encircling the Kolkata-Howrah twin city in the south Bengal Basin have been synthesised to explain the present- and paleo-hydrological processes, surface and groundwater interaction and mixing dynamics of contamination of groundwater. Rock-weathering, evaporation, ion-exchange and active mineral dissolution are the key processes commanding the groundwater chemistry. Freshwater flushing from the recharge zones had thinned the entrapped sea water which has generated the present-day brackish water by a non-uniform fusion. The best-fit line of the plots of δD and δ18O of groundwater samples displays a slope lower than that of local meteoric water line (LMWL) and global meteoric water line (GMWL) which hints that isotopic constitution of the groundwater of the present area is primarily formed by evaporation before or in the recharging process. A wide range of δ18O values in groundwater suggests that these waters are not blended enough to remove dissimilarities in isotope configuration of recharge water. This also suggests that many groundwaters are a result of mixing of present-day recharge and an older integrant recharged under previously cooler climatic conditions. The groundwater samples are more depleted of oxygen at the shallower level. The depleted samples cluster around the Tolly's nala (canal) where upper aquitard is missing or < 10-m thick. The tritium values range between 0.70 and 15.02 which indicate the occurrence of 'sub-modern', 'a mix of modern and sub-modern water' and 'modern water'. It indicates mingling of isotope-depleted water from the Hugli River by means of Tolly's canal with relatively less-depleted groundwater of Kolkata's late Pleistocene aquifer. The tritium values and Cl/Br ratio of groundwater samples adjoining Tolly's canal and elsewhere refer the direct infiltration of 'modern wastewater and freshwater' which mixes with the 'sub-modern water' in the aquifer system.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Tritio , Isótopos/análisis , Agua
18.
Environ Pollut ; 347: 123739, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458513

RESUMEN

Mercury (Hg) is a global pollutant, which particularly affects aquatic ecosystems, both marine and freshwater. Top-predators depending on these environments, such as seabirds, are regarded as suitable bioindicators of Hg pollution. In the Ebro Delta (NE Iberian Peninsula), legacy Hg pollution from a chlor-alkali industry operating in Flix and located ca. 100 km upstream of the Ebro River mouth has been impacting the delta environment and the neighboring coastal area. Furthermore, levels of Hg in the biota of the Mediterranean Sea are known to be high compared to other marine areas. In this work we used a Hg stable isotopes approach in feathers to understand the processes leading to different Hg concentrations in three Laridae species breeding in sympatry in the area (Audouin's gull Ichthyaetus audouinii, black-headed gull Chroicocephalus ridibundus, common tern Sterna hirundo). These species have distinct trophic ecologies, exhibiting a differential use of marine resources and freshwater resources (i.e., rice paddies prey). Moreover, for Audouin's gull, in which in the Ebro Delta colony temporal differences in Hg levels were documented previously, we used Hg stable isotopes to understand the impact of anthropogenic activities on Hg levels in the colony over time. Hg stable isotopes differentiated the three Laridae species according to their trophic ecologies. Furthermore, for Audouin's gull we observed temporal variations in Hg isotopic signatures possibly owing to anthropogenic-derived pollution in the Ebro Delta. To the best of our knowledge this is the first time Hg stable isotopes have been reported in seabirds from the NW Mediterranean.


Asunto(s)
Charadriiformes , Mercurio , Animales , Isótopos de Mercurio , Ecosistema , Monitoreo del Ambiente , Fitomejoramiento , Mercurio/análisis , Isótopos
19.
CNS Neurosci Ther ; 30(3): e14693, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38544365

RESUMEN

Cerebral metabolic dysfunction is a critical pathological hallmark observed in the aftermath of traumatic brain injury (TBI), as extensively documented in clinical investigations and experimental models. An in-depth understanding of the bioenergetic disturbances that occur following TBI promises to reveal novel therapeutic targets, paving the way for the timely development of interventions to improve patient outcomes. The 13C isotope tracing technique represents a robust methodological advance, harnessing biochemical quantification to delineate the metabolic trajectories of isotopically labeled substrates. This nuanced approach enables real-time mapping of metabolic fluxes, providing a window into the cellular energetic state and elucidating the perturbations in key metabolic circuits. By applying this sophisticated tool, researchers can dissect the complexities of bioenergetic networks within the central nervous system, offering insights into the metabolic derangements specific to TBI pathology. Embraced by both animal studies and clinical research, 13C isotope tracing has bolstered our understanding of TBI-induced metabolic dysregulation. This review synthesizes current applications of isotope tracing and its transformative potential in evaluating and addressing the metabolic sequelae of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Animales , Humanos , Lesiones Traumáticas del Encéfalo/metabolismo , Metabolismo Energético , Isótopos
20.
Anal Bioanal Chem ; 416(10): 2423-2437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38427100

RESUMEN

The availability of serology assays to measure antibodies against the SARS coronavirus 2 (SARS-CoV-2) expanded rapidly during the Covid-19 pandemic. The interchangeable use of such assays to monitor disease progression and immune protection requires their standardization, for which suitably characterized monoclonal antibody materials can be useful. The methods, based on isotope dilution mass spectrometry, to value assign the mass fraction of such a material in solution within the context of an international interlaboratory comparison study (CCQM-P216) are described. The mass fraction in solution of a humanized IgG monoclonal antibody (mAb) against the SARS-CoV-2 Spike glycoprotein in the study sample has been value assigned through a combination of liquid chromatography, isotope dilution mass spectrometry (LC-ID-MS) methods and size exclusion chromatography with UV detection (SEC-UV). The former were developed for the quantification of amino acids and proteotypic peptides as surrogate analytes of the mAb while the latter was applied for the determination of the relative monomeric mass fraction. High-resolution mass spectrometry (hrMS) allowed the molecular weight evaluation and ruled out the presence of significant impurities. Method trueness was assessed using a subclass homologous IgG1 material value assigned by amino acid analysis. The assigned mass fraction of monomeric SARS-CoV-2 IgG in solution was 390 ± 16 mg/g. The associated expanded uncertainty originated mainly from acid hydrolysis variability and Trypsin/Lys-C digestion variability and efficiency.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Espectrometría de Masas/métodos , Aminoácidos/análisis , Isótopos , Anticuerpos Monoclonales , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...